Cold-induced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus subtilis.
نویسندگان
چکیده
The nucleic acid binding cold shock proteins (CSPs) and the cold-induced DEAD box RNA helicases have been proposed separately to act as RNA chaperones, but no experimental evidence has been reported on a direct cooperation. To investigate the possible interaction of the putative RNA helicases CshA and CshB and the CSPs from Bacillus subtilis during cold shock, we performed genetic as well as fluorescence resonance energy transfer (FRET) experiments. Both cshA and cshB genes could be deleted only in the presence of a cshB copy in trans, showing that the presence of one csh gene is essential for viability. The combined gene deletion of cshB and cspD resulted in a cold-sensitive phenotype that was not observed for either helicase or csp single mutants. In addition to the colocalization of the putative helicases CshA and CshB with CspB and the ribosomes in areas surrounding the nucleoid, we detected a strong FRET interaction in vivo between CshB and CspB that depended on active transcription. In contrast, a FRET interaction was not observed for CshB and the ribosomal protein L1. Therefore, we propose a model in which the putative cold-induced helicases and the CSPs work in conjunction to rescue misfolded mRNA molecules and maintain proper initiation of translation at low temperatures in B. subtilis.
منابع مشابه
DEAD-Box RNA helicases in Bacillus subtilis have multiple functions and act independently from each other.
DEAD-box RNA helicases play important roles in remodeling RNA molecules and in facilitating a variety of RNA-protein interactions that are key to many essential cellular processes. In spite of the importance of RNA, our knowledge about RNA helicases is limited. In this study, we investigated the role of the four DEAD-box RNA helicases in the Gram-positive model organism Bacillus subtilis. A str...
متن کاملA cold shock-induced cyanobacterial RNA helicase.
The ability to modify RNA secondary structure is crucial for numerous cellular processes. We have characterized two RNA helicase genes, crhB and crhC, which are differentially expressed in the cyanobacterium Anabaena sp. strain PCC 7120. crhC transcription is limited specifically to cold shock conditions while crhB is expressed under a variety of conditions, including enhanced expression in the...
متن کاملThe CshA DEAD-box RNA helicase is important for quorum sensing control in Staphylococcus aureus
DEAD-box RNA helicases are present in almost all living organisms and participate in various processes of RNA metabolism. Bacterial proteins of this large family were shown to be required for translation initiation, ribosome biogenesis and RNA decay. The latter is primordial for rapid adaptation to changing environmental conditions. In particular, the RhlB RNA helicase from E. coli was shown to...
متن کاملLocalization of Components of the RNA-Degrading Machine in Bacillus subtilis
In bacteria, the control of mRNA stability is crucial to allow rapid adaptation to changing conditions. In most bacteria, RNA degradation is catalyzed by the RNA degradosome, a protein complex composed of endo- and exoribonucleases, RNA helicases, and accessory proteins. In the Gram-positive model organism Bacillus subtilis, the existence of a RNA degradosome assembled around the membrane-bound...
متن کاملAssociation of the Cold Shock DEAD-Box RNA Helicase RhlE to the RNA Degradosome in Caulobacter crescentus
In diverse bacterial lineages, multienzyme assemblies have evolved that are central elements of RNA metabolism and RNA-mediated regulation. The aquatic Gram-negative bacterium Caulobacter crescentus, which has been a model system for studying the bacterial cell cycle, has an RNA degradosome assembly that is formed by the endoribonuclease RNase E and includes the DEAD-box RNA helicase RhlB. Immu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 188 1 شماره
صفحات -
تاریخ انتشار 2006